Previsão pós-pandémica do turismo recetivo por via aérea utilizando modelos Bayesianos. O caso da Colômbia

Autores

DOI:

https://doi.org/10.25145/j.pasos.2025.23.047

Palavras-chave:

estudos culturais, políticas públicas, turismo aéreo, demanda turística, turismo recetivo 

Resumo

Este artigo faz uma previsão de médio-longo prazo (2023-2030) do fluxo de turistas estrangeiros para o país por via aérea, usando a Colômbia como um estudo de caso. Anteriormente, analisamos como o desenvolvimento e a aplicação de políticas públicas de turismo conseguiram impulsionar o turismo, com ênfase no turismo recetivo, nas últimas três décadas, até o ano de 2019 (antes do período de pandemia). Para atingir este objetivo, e como abordagem metodológica, é desenvolvido um modelo Bayesiano Estrutural de Séries Temporais (BSTS), concebido para trabalhar com dados de séries temporais, e amplamente utilizado para seleção de caraterísticas, previsão de séries temporais, previsão imediata e inferência de impacto causal. Dos resultados obtidos destacam-se dois aspectos relevantes: primeiro, que o crescimento da procura futura (afluência de turistas estrangeiros não residentes por via aérea) manterá a tendência apresentada no período de recuperação pós-pandemia (2022). E, em segundo lugar, os modelos apresentam valores de erro, medidos através do indicador MAPE, inferiores a 5%, o que torna o método BSTS uma metodologia alternativa viável para o cálculo das previsões da procura turística (a médio-longo prazo).

Downloads

Não há dados estatísticos.

##plugins.generic.pfl.publicationFactsTitle##

Metric
##plugins.generic.pfl.thisArticle##
##plugins.generic.pfl.otherArticles##
##plugins.generic.pfl.peerReviewers## 
##plugins.generic.pfl.numPeerReviewers##
##plugins.generic.pfl.averagePeerReviewers##

##plugins.generic.pfl.reviewerProfiles##  Indisp.

##plugins.generic.pfl.authorStatements##

##plugins.generic.pfl.authorStatements##
##plugins.generic.pfl.thisArticle##
##plugins.generic.pfl.otherArticles##
##plugins.generic.pfl.dataAvailability## 
##plugins.generic.pfl.dataAvailability.unsupported##
##plugins.generic.pfl.averagePercentYes##
##plugins.generic.pfl.funders## 
##plugins.generic.pfl.funders.no##
##plugins.generic.pfl.numHaveFunders##
##plugins.generic.pfl.competingInterests## 
Indisp.
##plugins.generic.pfl.averagePercentYes##
Metric
##plugins.generic.pfl.forThisJournal##
##plugins.generic.pfl.otherJournals##
##plugins.generic.pfl.articlesAccepted## 
##plugins.generic.pfl.numArticlesAccepted##
##plugins.generic.pfl.numArticlesAcceptedShort##
##plugins.generic.pfl.daysToPublication## 
##plugins.generic.pfl.numDaysToPublication##
145

##plugins.generic.pfl.indexedIn##

    ##plugins.generic.pfl.indexedList##
##plugins.generic.pfl.editorAndBoard##
##plugins.generic.pfl.profiles##
##plugins.generic.pfl.academicSociety## 
PASOS. Revista de Turismo y Patrimonio Cultural
##plugins.generic.pfl.publisher## 
Instituto Universitario de Investigación Social y Turismo. Universidad de La Laguna (España) - Instituto Universitario da Maia ISMAI (Portugal)

Referências

Aerocivil 2023. Estadísticas de la actividad aeronáutica. Autoridad Aeronáutica Civil de Colombia. https://www.aerocivil.gov.co/atencion/estadisticas-de-las-actividades-aeronauticas

Alonso, J. 2022. “El turismo como motor de crecimiento económico en Colombia (2000-2019).” Revista Internacional de Turismo, Empresa y Territorio, 6 (1), 57-83. DOI: 10.21071/riturem.v6i1.14056

Bach, S.; Huang, B.; London, B. y Getoor, L. 2013. “Hinge-loss Markov Random Fields: Convex Inference for Structured Prediction.” arXiv:1309.6813 [cs.LG]. DOI: 10.48550/arXiv.1309.6813

Balli, F.; Balli, H.O. y Louis, R. 2016. “The impacts of immigrants and institutions on bilateral tourism flows.” Tourism Management, 52, 221–229. DOI: 10.1016/j.tourman.2015.06.021

Banco de la República de Colombia 2023. Estadísticas económicas. https://www.banrep.gov.co/es/estadisticas

Benavides, G. 2015. “Las políticas públicas del turismo receptivo colombiano.” Suma de Negocios, 6 (13), 66-73. DOI: 10.1016/j.sumneg.2015.08.005

Benavides, G. y Venegas, S. 2013. “Una aproximación a la competitividad, las tendencias y la política pública en el turismo colombiano.” Revista de Análisis Turístico, 16, 1-12.

Box, G. y Tiao, G. 1975. “Intervention analysis with applications to economic and environmental problems.” Journal of the American Statistical Association, 70, 70–79. DOI: 10.1080/01621459.1975.10480264

Blei, D.; Kucukelbir, A. y McAuliffe, J. 2017. “Variational inference: A review for statisticians”. Journal of the American Statistical Association, 112(518), 859-877. DOI: 10.1080/01621459.2017.1285773

Bolker, B. 2008. Ecological models and data in R. Princeton: Princeton University Press.

Brodersen, K.; Gallusser, F.; Koehler, J.; Remy, N. y Scott, S. 2015. “Inferring causal impact using Bayesian structural time-series models.” The Annals of Applied Statistics, 9, 247–274. DOI: 10.1214/14-AOAS788

Chen, J.; Li, G.; Wu, D. y Shen, S. 2019. “Forecasting seasonal tourism demand using a multiseries structural time series method.” Journal of Travel Research, 58 (1), 92–103. DOI: 10.1177/0047287517737191

Cho, V. 2003. “A comparison of three different approaches to tourist arrival forecasting.” Tourism Management, 24 (3), 323–330. DOI: 10.1016/S0261-5177(02)00068-7

Chu, F. 1998. “Forecasting tourism demand in Asian-Pacific countries.” Annals of Tourism Research, 25 (3), 597–615. DOI: 10.1016/S0160-7383(98)00012-7

Clark, J. 2005. “Why environmental scientists are becoming Bayesians”. Ecology Letters, 8(1), 2-14. DOI: 10.1111/j.1461-0248.2004.00702.x

Darani, H.R. y Asghari, H. 2018. “Study of international tourism demand in Middle East by panel data model.” International Journal of Culture, Tourism and Hospitality Research, 12 (1), 80–88. DOI: 10.1108/IJCTHR-03-2017-0030

de Gooijer, J. G. y Godefay, D. 1999. “Kernel-based multistep-ahead predictions of the U.S. short-term interest rate.” Tinbergen Institute Discussion Papers 99- 015/4. https://hdl.handle.net/11245/1.155836

DANE 2023. Estadísticas por tema. Departamento Administrativo Nacional de Estadística. https://www.dane.gov.co/index.php/estadisticas-por-tema

DANE 2023b. Cuenta satélite de turismo. Departamento Administrativo Nacional de Estadística. https://www.dane.gov.co/index.php/comunicados-y-boletines/cuentas-y-sintesis-nacionales/turismo

Díaz Olariaga, O. 2015. “Análisis de la aplicación de políticas públicas en el sector turismo. El caso de Colombia.” Gestión y Análisis de Políticas Públicas, 14, 115-130.

Díaz Olariaga, O. y Carvajal, A. 2020. “Perspectiva geográfica del desarrollo de la conectividad aérea en Colombia.” Boletín Geográfico, 42(2), 145 - 168

Díaz Olariaga, O. 2021. “Influencia de la política pública de transporte aéreo en la dinámica del flujo turístico. El caso de Colombia.” PASOS, Revista de Turismo y Patrimonio Cultural, 19(2), 285-301. DOI: 10.25145/j.pasos.2021.19.019

Díaz Olariaga, O. y Alonso, C. 2021. “Impact of airport policies on regional development. Evidence from the Colombian case.” Regional Science Policy & Practice, 1–26. DOI: 10.1111/rsp3.1248326

DNP 1998. Plan Nacional de Desarrollo 1998-2002. Bogotá: Departamento Nacional de Planeación (Colombia).

DNP 2002. Plan Nacional de Desarrollo 2002-2006. Bogotá: Departamento Nacional de Planeación (Colombia).

DNP 2006. Plan Nacional de Desarrollo 2006-2010. Bogotá: Departamento Nacional de Planeación (Colombia).

DNP 2010. Plan Nacional de Desarrollo 2010-2014. Bogotá: Departamento Nacional de Planeación (Colombia).

DNP 2014. Plan Nacional de Desarrollo 2014-2018. Bogotá: Departamento Nacional de Planeación (Colombia).

DNP 2018. Plan Nacional de Desarrollo 2018-2022. Bogotá: Departamento Nacional de Planeación (Colombia).

Durbin, J. y Koopman, S. 2012. Time Series Analysis by State Space Methods. Oxford: Oxford University Press.

FONTUR 2023. Fontur Colombia comunicados. https://acortar.link/cdjlfu

Fourie, J. y Santana-Gallego, M. 2011. “The impact of mega-sport events on tourist arrivals.” Tourism Management, 32 (6), 1364–1370. DOI: 10.1016/j.tourman.2011.01.011

Gelman, A.; Carlin, J.B.; Stern, H.S.; Dunson, D.; Vehtari, A. y Rubin, D. 2013. Bayesian data analysis. New York: Chapman and Hall / CRC Press.

George, E. y McCulloch, R. 1997. “Approaches for Bayesian Variable Selection.” Statistica Sinica. 7. 339-373. http://www.jstor.org/stable/24306083

Gerakis, A.S. 1965. “Effects of exchange-rate devaluations and revaluations on receipts from tourism.” Staff Papers, 12 (3), 365–384.

Giri, S.; Purkayastha, S.; Hazra, S.; Chanda, A.; Das, I. y Das, S. (2020). “Prediction of Monthly Hilsa (Tenualosa ilisha) Catch in the Northern Bay of Bengal using Bayesian Structural Time Series Model.” Regional Studies in Marine Science. 39, 101456. DOI: 10.1016/j.rsma.2020.101456

Goh, C. y Law, R. 2002. “Modeling and forecasting tourism demand for arrivals with stochastic nonstationary seasonality and intervention.” Tourism Management, 23 (5), 499–510. DOI: 10.1016/S0261-5177(02)00009-2

Gray, H.P. 1966. “The demand for international travel by the United States and Canada.” International Economic Review, 7 (1), 83–92.

Gunter, U. y Onder, I. 2016. “Forecasting city arrivals with Google analytics.” Annals of Tourism Research, 61, 199–212. DOI: 10.1016/j.annals.2016.10.007

Hamilton, D. 1994. Time Series Analysis. Princeton: Princeton University Press.

Hasyyati, A.; Indriani, R. y Lestari, T. (2022). “Predicting Tourism Demand in Indonesia Using Google Trends Data”. arXiv:2211.13938v1 [stat.AP]. DOI: 10.48550/arXiv.2211.13938

Hassani, H.; Silva, E.S.; Antonakakis, N.; Filis, G. y Gupta, R. 2017. “Forecasting accuracy evaluation of tourist arrivals.” Annals of Tourism Research, 63, 112–127. DOI: 10.1016/j.annals.2017.01.008

Harvey, A.; Trimbur, T. y Van Dijk, H. 2007. “Trends and Cycles in Economic Time Series: A Bayesian Approach.” Journal of Econometrics, 140, 618-649. DOI: 10.1016/j.jeconom.2006.07.006

Hoeting, J.; Madigan, D.; Raftery, A. y Volinsky, C. 1999. “Bayesian Model Averaging: A Tutorial.” Statistical Science, 14(4), 382-417. https://www.jstor.org/stable/2676803

Hu, M. y Song, H. 2019. “Data source combination for tourism demand forecasting.” Tourism Economics, 26(7), 1248-1265. DOI: 10.1177/1354816619872592

Hu, Y. 2021a. “Forecasting the demand for tourism using combinations of forecasts by neural network-based interval grey prediction models.” Asia Pacific Journal of Tourism Research, 26(12), 1350–1363. DOI: 10.1080/10941665.2021.1983623

Hu, Y. 2021b. “Forecasting tourism demand using fractional grey prediction models with Fourier series.” Annals of Operations Research, 300(2), 467–491. DOI: 10.1007/s10479-020-03670-0

Hu, Y. y Jiang, P. 2020. “Fuzzified grey prediction models using neural networks for tourism demand forecasting.” Computational and Applied Mathematics. DOI: 10.1007/s40314-020-01188-6

Hu, Y.; Jiang, P. y Lee, P. C. 2019. “Forecasting tourism demand by incorporating neural networks into grey-Markov models.” Journal of the Operational Research Society, 70(1), 12–20. DOI: 10.1080/01605682.2017.1418150

Huang, Y. y Lee, Y. H. 2011. “Accurately forecasting model for the stochastic volatility data in tourism demand.” Modern Economy, 2(5), 823–829. DOI: 10.4236/me.2011.25091

Hyndman, R. y Athanasopoulos, G. 2018. Forecasting: Principles and Practice. OTexts. https://otexts.com/fpp3/

Jalali, P. y Rabotyagov, S. 2020. “Quantifying cumulative effectiveness of green stormwater infrastructure in improving water quality.” Science of the Total Environment, 731, 138953. DOI: 10.1016/j.scitotenv.2020.138953

Jones, G. y Qin, Q. 2022. “Markov Chain Monte Carlo in Practice.” Annual Review of Statistics and Its Application, 9(1), 557-578. DOI: 10.1146/annurev-statistics-040220-090158

Kéry, M. 2010. Introduction to WinBUGS for Ecologists. Burlington (MA): Academic Press.

Koller, D. y Friedman, N. 2009. Probabilistic Graphical Models. Cambridge, MA: MIT Press.

Koop, G.; Poirier, D. y Tobias, J. 2007. Bayesian Econometric Methods. Cambridge: Cambridge University Press.

Li, Y.; Lin, Z. y Xiao, S. 2022. “Using social media big data for tourist demand forecasting: A new machine learning analytical approach.” Journal of Digital Economy, 1, 32–43. DOI: 10.1016/j.jdec.2022.08.006

Li, G.; Wong, K.; Song, H. y Witt, S. 2006. “Tourism Demand Forecasting: A Time Varying Parameter Error Correction Model.” Journal of Travel Research, 45 (2): 175–85. DOI: 10.1177/0047287506291596

Li, H.; Goh, C.; Hung, K. y Chen, J. 2018. “Relative Climate Index and Its Effect on Seasonal Tourism Demand.” Journal of Travel Research, 57(2), 178-192. DOI: 10.1177/0047287516687409.

Lim, C. y McAleer, M. 2001. “Forecasting tourist arrivals.” Annals of Tourism Research, 28 (4), 965–977. DOI: 10.1016/S0160-7383(01)00006-8

Liu, Y.; Tseng, F. y Tseng, Y. 2018. “Big Data analytics for forecasting tourism destination arrivals with the applied Vector Autoregression model.” Technological Forecasting and Social Change, 130, 123–134. DOI: 10.1016/j.techfore.2018.01.018

Liu, X.; Peng, H.; Bai, Y.; Zhu, Y. y Liao, L. 2014. “Tourism flows prediction based on an improved grey GM(1,1) model.” Procedia - Social and Behavioral Sciences, 138, 767–775. DOI: 10.1016/j.sbspro.2014.07.256

Liu, S.; Yang, Y. y Forrest, J. 2017. Grey data analysis: Methods, models and applications. Heidelberg: Springer.

Long, W.; Liu, C. y Song, H. 2019. “Pooling in Tourism Demand Forecasting.” Journal of Travel Research, 58(7), 1161-1174. DOI: 10.1177/0047287518800390

Madhavan M.; Sharafuddin M.; Piboonrungroj, P. y Yang, C. 2023. “Short-term forecasting for airline industry: the case of Indian air passenger and air cargo.” Global Business Review, 24(6), 1145-1179. DOI: 10.1177/0972150920923316.

Martin, C.A. y Witt, S.F. 1989. “Forecasting tourism demand: a comparison of the accuracy of several quantitative methods.” International Journal of Forecasting, 5 (1), 7–19. DOI: 10.1016/0169-2070(89)90059-9

McElreath, R. 2016. Statistical rethinking: A Bayesian Course with examples in R and Stan. Boca Ratón: CRS Press.

Menchero, M. 2018. “Colombia en posconflicto: ¿turismo para la paz o paz para el turismo?”. Araucaria, Revista Iberoamericana de Filosofía, Política y Humanidades, 39, 415-438

MinCIT 2022. El turismo en cifras. Bogotá: Ministerio de Comercio, Industria y Turismo de Colombia.

MinCIT 2023. Informes de turismo. Ministerio de Comercio, Industria y Turismo de Colombia. https://www.mincit.gov.co/estudios-economicos/estadisticas-e-informes/informes-de-turismo

MinCIT 2023b. Noticias de turismo. Ministerio de Comercio, Industria y Turismo de Colombia. https://www.mincit.gov.co/prensa/noticias/turismo/turismo-recuperandose-cifras-cuenta-satelite-2022

MinCIT 2018. Resultados para el turismo para el año 2018. Bogotá: Ministerio de Comercio, Industria y Turismo de Colombia.

Matzner-Lofber, E.; Gannoun, A. y de Gooijer, J. 1998. “Nonparametric forecasting: a comparison of three kernel-based methods.” Communications in Statistics - Theory and Methods 27(7), 1593-1617. DOI: 10.1080/03610929808832180

Pan, B. y Yang, Y. 2017. “Forecasting Destination Weekly Hotel Occupancy with Big Data.” Journal of Travel Research, 56 (7): 957–70. DOI: 10.1177/0047287516669050

Peng, B.; Song, H. y Crouch, G.I. 2014. “A meta-analysis of international tourism demand forecasting and implications for practice.” Tourism Management, 45, 181–193. DOI: 10.1016/j.tourman.2014.04.005

Peters, J.; Janzing, D. y Schölkopf, B. 2017. Elements of Causal Inference: Foundations and Learning Algorithms. Cambridge, MA: MIT Press.

Ren, L. y Glasure, Y. 2009. “Applicability of the revised mean absolute percentage errors (mape) approach to some popular normal and non-normal independent time series.” International Advances in Economic Research, 15, 409–420. DOI: 10.1080/01621459.1975.10480264

Rodríguez, Y.; Pineda, W. y Díaz Olariaga, O. 2020. “Air traffic forecast in post-liberalization context: a Dynamic Linear Models approach.” Aviation, 24(1), 10-19. DOI: 10.3846/aviation.2020.12273

Santana, L.J. 2019. Nowcasting with Google Trends: Dynamics of the Monthly Economic Activity, Private Consumption and Investment based on Google Trends Data and a Bayesian Structural Time Series Model. XIII Foro de Investigadores de Bancos Centrales del Consejo Monetario Centroamericano. Ciudad de Guatemala, Guatemala, 5-6 Sept. 2019. https://www.secmca.org/recard/index.php/foro/article/view/154

Scott, S. y Varian, H. 2014. “Predicting the present with Bayesian structural time series.” International Journal of Mathematical Modelling and Numerical Optimisation, 5(1-2), 4-23.

Scott, S. y Varian, H. 2015. “Bayesian Variable Selection for Nowcasting Economic Time Series.” NBER Chapters, in: Economic Analysis of the Digital Economy, 119-135. National Bureau of Economic Research, Inc.

Song, H.; Dwyer, L.; Li, G. y Cao, Z. 2012. “Tourism Economics Research: A Review and Assessment.” Annals of Tourism Research, 39 (3): 1653–82. DOI: 10.1016/j.annals.2012.05.023

Song, H. y Witt, S. 2006. “Forecasting international tourist flows to Macau.” Tourism Management, 27 (2), 214–224. DOI: 10.1016/j.tourman.2004.09.004

Sun, X.; Sun, W.; Wang, J. y Gao, Y. 2016. “Using a grey-Markov model optimized by cuckoo search algorithm to forecast the annual foreign tourist arrivals to China.” Tourism Management, 52, 369–379. DOI: 10.1016/j.tourman.2015.07.005

Tica, J. y Kozic, I. 2015. “Forecasting Croatian inbound tourism demand.” Economic Research, 28(1), 1046-1062. DOI: 10.1080/1331677X.2015.1100842

Toro, G. 2003. “La política pública de turismo en Colombia.” Turismo y Sociedad, 2, 9–16.

Toro, G.; Galán, M.; Pico, L.; Rozo, E. y Suescún, H. 2015. “La planificación turística desde el enfoque de la competitividad: caso Colombia.” Turismo y Sociedad, vol. 16, 131-185.

Wan, S. y Song, H. 2018. “Forecasting turning points in tourism growth.” Annals of Tourism Research, 72, 156–167. DOI: 10.1016/j.annals.2018.07.010

Wang, C. 2004. “Predicting tourism demand using fuzzy time series and hybrid grey theory.” Tourism Management, 25 (3), 367–374. DOI: 10.1016/S0261-5177(03)00132-8

Witt, S.; Song, H. y Louvieris, P. 2003. “Statistical testing in forecasting model selection.” Journal of Travel Research, 42(2), 151-158. DOI: 10.1177/0047287503253941.

Wu, C. 2010. Econometric analysis of tourist expenditures. Ph.D. Thesis, Hong Kong Polytechnic University. https://theses.lib.polyu.edu.hk/bitstream/200/5916/1/b23930639.pdf

Wu, D.C.; Song, H. y Shen, S. 2017. “New developments in tourism and hotel demand modeling and forecasting.” International Journal of Contemporary Hospitality Management, 29 (1), 507–529. DOI: 10.1108/IJCHM-05-2015-0249

Xie, G.; Li, X.; Qian, Y. y Wang, S. 2020. “Forecasting tourism demand with KPCA-based web search indexes.” Tourism Economics, 27 (4), 721–743. DOI: 10.1177/1354816619898576

Xu, X.; Law, R.; Chen, W. y Tang, L. 2016. “Forecasting tourism demand by extracting fuzzy Takagi–Sugeno rules from trained SVMs.” CAAI Transactions on Intelligence Technology, 1(1), 30-42. DOI: 10.1016/j.trit.2016.03.004

Yin, L. 2020. “Forecast without historical data: objective tourist volume forecast model for newly developed rural tourism areas of China.” Asia Pacific Journal of Tourism Research, 25(5), 555-571. DOI: 10.1080/10941665.2020.1752755

Yang, Y.; Fik, T. y Zhang, H. 2017. “Designing a Tourism Spillover Index Based on Multidestination Travel: A Two-Stage Distance-Based Modeling Approach.” Journal of Travel Research, 56 (3): 317–33. DOI: 10.1177/0047287516641782

Zhang, Y. y Fricker, J. 2021. “Quantifying the Impact of COVID-19 on Non-Motorized Transportation: A Bayesian Structural Time Series Model.” Transport Policy, 103, 11-20. DOI: 10.1016/j.tranpol.2021.01.01

Publicado

2025-07-17

Como Citar

Rodríguez, Y., Díaz Olariaga, O., & López, A. (2025). Previsão pós-pandémica do turismo recetivo por via aérea utilizando modelos Bayesianos. O caso da Colômbia. PASOS Revista De Turismo Y Patrimonio Cultural, 23(3), 735–753. https://doi.org/10.25145/j.pasos.2025.23.047