Previsão da demanda turística do Chile com base em modelos lineares e não lineares sazonais
DOI:
https://doi.org/10.25145/j.pasos.2021.19.021Palavras-chave:
Modelos ARIMA, demanda turística, estimação de curto prazo, séries não lineares, séries sazonaisResumo
Neste trabalho, foi modelado o turismo emissivo e receptivo que o Chile experimentou para o período 2000-2018. Modelos de regressão linear com variáveis dicotômicas e modelos ARIMA com componente sazonal foram utilizados para modelar as séries e avaliar seus erros de previsão. Os resultados mostram que os modelos ARIMA com um componente sazonal permitem modelar e prever as séries que refletem adequadamente a dinâmica do crescimento e seu comportamento sazonal com menos erros no curto prazo.
Downloads
Referências
Box, G. E., Jenkins, G., Reinsel, G. C., & Ljung, G. M. (2016). Time series analysis: forecasting and control (5th ed.). New Jersey: John Wiley & Sons.
Box, G. E. P., Jenkins, G. M., & MacGregor, J. F. (1974). Some Recent Advances in Forecasting and Control. Applied Statistics, 23(2), 158. https://doi.org/10.2307/2346997
Chang, Y. W., & Liao, M. Y. (2010). A seasonal ARIMA model of tourism forecasting: The case of Taiwan.
Asia Pacific Journal of Tourism Research, 15(2), 215–221. https://doi.org/10.1080/10941661003630001
Chatziantoniou, I., Degiannakis, S., Eeckels, B., & Filis, G. (2016). Forecasting tourist arrivals using origin country macroeconomics. Applied Economics, 48(27), 2571–2585. https://doi.org/10.1080/00036846.2015.1125434
Choden, & Unhapipat, S. (2018). ARIMA model to forecast international tourist visit in Bumthang, Bhutan.
Journal of Physics: Conference Series, 1039(1). https://doi.org/10.1088/1742-6596/1039/1/012023
Du Preez, J., & Witt, S. F. (2003). Univariate versus multivariate time series forecasting: an application to international tourism demand. International Journal of Forecasting, 19(3), 435–451. https://doi.org/10.1016/S0169-2070(02)00057-2
Goh, C., & Law, R. (2002). Modeling and forecasting tourism demand for arrivals with stochastic nonstationary seasonality and intervention. Tourism Management, 23(5), 499–510. https://doi.org/10.1016/S0261-5177(02)00009-2
Goh, C., & Law, R. (2011). The Methodological Progress of Tourism Demand Forecasting: A Review of Related Literature. Journal of Travel & Tourism Marketing, 28(3), 296–317. https://doi.org/10.1080/10548408.2011.562856
Greene, W. H. (2018). Econometric analysis (8th ed.). Pearson.
Higgins-Desbiolles, F. (2020). Socialising tourism for social and ecological justice after COVID-19. Tourism
Geographies. https://doi.org/10.1080/14616688.2020.1757748
Kim, J. H., Wong, K., Athanasopoulos, G., & Liu, S. (2011). Beyond point forecasting: Evaluation of alternative prediction intervals for tourist arrivals. International Journal of Forecasting, 27(3), 887–901. https://doi.org/10.1016/J.IJFORECAST.2010.02.014
Kulendran, N., & Witt, S. F. (2003). Forecasting the Demand for International Business Tourism. Journal of
Travel Research, 41(3), 265–271. https://doi.org/10.1177/0047287502239034
Kulendran, N., & Wong, K. K. F. (2005). Modeling Seasonality in Tourism Forecasting. Journal of Travel
Research, 44(2), 163–170. https://doi.org/10.1177/0047287505276605
Lim, C., & McAleer, M. (2000). A seasonal analysis of Asian tourist arrivals to Australia. Applied Economics,32(4), 499–509. https://doi.org/10.1080/000368400322660
Lim, C., & McAleer, M. (2001). Forecasting tourist arrivals. Annals of Tourism Research, 28(4), 965–977. https://doi.org/10.1016/S0160-7383(01)00006-8
Lim, C., & McAleer, M. (2002). Time series forecasts of international travel demand for Australia. Tourism
Management, 23(4), 389–396. https://doi.org/10.1016/S0261-5177(01)00098-X
Ma, E., Liu, Y., Li, J., & Chen, S. (2016). Anticipating Chinese tourists arrivals in Australia: A time series analysis. Tourism Management Perspectives, 17, 50–58. https://doi.org/10.1016/j.tmp.2015.12.004
Makridakis, S., & Hibon, M. (1997). ARMA models and the Box-Jenkins methodology. Journal of Forecasting, 16(3), 147–163. https://doi.org/10.1002/(SICI)1099-131X(199705)16:3<147::AID- FOR652>3.0.CO;2-X
Organización Mundial del Turismo. (2017). Panorama OMT del turismo internacional, Edición 2017. In
Panorama OMT del turismo internacional, Edición 2017. https://doi.org/10.18111/9789284419043
Peiris, H. (2016). A Seasonal ARIMA Model of Tourism Forecasting : The Case of Sri Lanka. Journal of Tourism, Hospitality and Sports, 22, 98–109. Retrieved from https://www.iiste.org/Journals/index.php/JTHS/article/view/33831
Song, H., & Li, G. (2008). Tourism demand modelling and forecasting—A review of recent research. Tourism
Management, 29(2), 203–220. https://doi.org/10.1016/J.TOURMAN.2007.07.016
Song, H., Qiu, R. T. R., & Park, J. (2019). A review of research on tourism demand forecasting. Annals of
Tourism Research, 75, 338–362. https://doi.org/10.1016/J.ANNALS.2018.12.001
Song, H., Wen, L., & Liu, C. (2019). Density tourism demand forecasting revisited. Annals of Tourism
Research, 75, 379–392. https://doi.org/10.1016/J.ANNALS.2018.12.019
Song, H., & Witt, S. F. (2011). Tourism demand modelling and forecasting : modern econometric approaches. Routledge.
Subsecretaria de Turismo de Chile. (2018). Estadísticas. Retrieved June 10, 2020, from http://www.subturismo.gob.cl/documentos/estadisticas/
Thushara, S. C., Su, J.-J., & Bandara, J. S. (2019). Forecasting international tourist arrivals in formulating tourism strategies and planning: The case of Sri Lanka. Cogent Economics & Finance, 7(1). https://doi.org/10.1080/23322039.2019.1699884
Velásquez, J. D., Olaya, Y., & Franco, C. J. (2010). Predicción de series temporales usando máquinas de vectores de soporte. Ingeniare, 18(1), 64–75. https://doi.org/10.4067/s0718-33052010000100008
Witt, C. A., Witt, S. F., & Wilson, N. (1994). Forecasting international tourist flows. Annals of Tourism
Research, 21(3), 612–628. https://doi.org/10.1016/0160-7383(94)90123-6
World travel & Tourism Council. (2018). Economic Impact: Chile. Retrieved from https://www.wttc.org/economic-impact/country-analysis/
Zenker, S., & Kock, F. (2020). The coronavirus pandemic – A critical discussion of a tourism research agenda. Tourism Management, 81. https://doi.org/10.1016/j.tourman.2020.104164
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2020 Cristian Mauricio Mondaca-Marino, Ailin Arriagada-Millaman
Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Confirmo que o trabalho é original (de minha/nossa autoria), e que não será submetido a outras revistas ou publicações até a resolução final do processo de revisão em PASOS, RTPC.
Autorizo a publicação do meu trabalho por PASOS, PSTN de acesso livre e aberto em qualquer dos formatos que considere oportuno, por tempo indeterminado e como colaboração não remunerada.
Da mesma forma, o(s) autor(es) entende(m) que o trabalho publicado pode ser vinculado ou depositado em qualquer servidor ou incluído em outras publicações (republicação), desde que o novo local e/ou a nova edição façam referência à publicação original e reconheçam a autoria e propriedade de direitos autorais das publicações PASOS RTPC.
Os autores entendem que uma verificação de plágio autoplágio será realizada, e o artigo poderá ser removido a qualquer momento do fluxo editorial.