Forecast of Chile's tourism demand based on seasonal linear and nonlinear models
DOI:
https://doi.org/10.25145/j.pasos.2021.19.021Keywords:
ARIMA models, tourism demand, short-term estimation, non-linear series, seasonal seriesAbstract
In this paper the emissive and receptive tourism that Chile experienced for the period 2000-2018 has been modeled. Linear regression models with dichotomous variables and ARIMA with seasonal component models have been used to modeling times series and evaluate their forecast errors. The results show that ARIMA with a seasonal component models allow modeling and forecasting of the series that adequately reflect the dynamics of growth and its seasonal behavior with less error in the short term.
Downloads
References
Box, G. E., Jenkins, G., Reinsel, G. C., & Ljung, G. M. (2016). Time series analysis: forecasting and control (5th ed.). New Jersey: John Wiley & Sons.
Box, G. E. P., Jenkins, G. M., & MacGregor, J. F. (1974). Some Recent Advances in Forecasting and Control. Applied Statistics, 23(2), 158. https://doi.org/10.2307/2346997
Chang, Y. W., & Liao, M. Y. (2010). A seasonal ARIMA model of tourism forecasting: The case of Taiwan.
Asia Pacific Journal of Tourism Research, 15(2), 215–221. https://doi.org/10.1080/10941661003630001
Chatziantoniou, I., Degiannakis, S., Eeckels, B., & Filis, G. (2016). Forecasting tourist arrivals using origin country macroeconomics. Applied Economics, 48(27), 2571–2585. https://doi.org/10.1080/00036846.2015.1125434
Choden, & Unhapipat, S. (2018). ARIMA model to forecast international tourist visit in Bumthang, Bhutan.
Journal of Physics: Conference Series, 1039(1). https://doi.org/10.1088/1742-6596/1039/1/012023
Du Preez, J., & Witt, S. F. (2003). Univariate versus multivariate time series forecasting: an application to international tourism demand. International Journal of Forecasting, 19(3), 435–451. https://doi.org/10.1016/S0169-2070(02)00057-2
Goh, C., & Law, R. (2002). Modeling and forecasting tourism demand for arrivals with stochastic nonstationary seasonality and intervention. Tourism Management, 23(5), 499–510. https://doi.org/10.1016/S0261-5177(02)00009-2
Goh, C., & Law, R. (2011). The Methodological Progress of Tourism Demand Forecasting: A Review of Related Literature. Journal of Travel & Tourism Marketing, 28(3), 296–317. https://doi.org/10.1080/10548408.2011.562856
Greene, W. H. (2018). Econometric analysis (8th ed.). Pearson.
Higgins-Desbiolles, F. (2020). Socialising tourism for social and ecological justice after COVID-19. Tourism
Geographies. https://doi.org/10.1080/14616688.2020.1757748
Kim, J. H., Wong, K., Athanasopoulos, G., & Liu, S. (2011). Beyond point forecasting: Evaluation of alternative prediction intervals for tourist arrivals. International Journal of Forecasting, 27(3), 887–901. https://doi.org/10.1016/J.IJFORECAST.2010.02.014
Kulendran, N., & Witt, S. F. (2003). Forecasting the Demand for International Business Tourism. Journal of
Travel Research, 41(3), 265–271. https://doi.org/10.1177/0047287502239034
Kulendran, N., & Wong, K. K. F. (2005). Modeling Seasonality in Tourism Forecasting. Journal of Travel
Research, 44(2), 163–170. https://doi.org/10.1177/0047287505276605
Lim, C., & McAleer, M. (2000). A seasonal analysis of Asian tourist arrivals to Australia. Applied Economics,32(4), 499–509. https://doi.org/10.1080/000368400322660
Lim, C., & McAleer, M. (2001). Forecasting tourist arrivals. Annals of Tourism Research, 28(4), 965–977. https://doi.org/10.1016/S0160-7383(01)00006-8
Lim, C., & McAleer, M. (2002). Time series forecasts of international travel demand for Australia. Tourism
Management, 23(4), 389–396. https://doi.org/10.1016/S0261-5177(01)00098-X
Ma, E., Liu, Y., Li, J., & Chen, S. (2016). Anticipating Chinese tourists arrivals in Australia: A time series analysis. Tourism Management Perspectives, 17, 50–58. https://doi.org/10.1016/j.tmp.2015.12.004
Makridakis, S., & Hibon, M. (1997). ARMA models and the Box-Jenkins methodology. Journal of Forecasting, 16(3), 147–163. https://doi.org/10.1002/(SICI)1099-131X(199705)16:3<147::AID- FOR652>3.0.CO;2-X
Organización Mundial del Turismo. (2017). Panorama OMT del turismo internacional, Edición 2017. In
Panorama OMT del turismo internacional, Edición 2017. https://doi.org/10.18111/9789284419043
Peiris, H. (2016). A Seasonal ARIMA Model of Tourism Forecasting : The Case of Sri Lanka. Journal of Tourism, Hospitality and Sports, 22, 98–109. Retrieved from https://www.iiste.org/Journals/index.php/JTHS/article/view/33831
Song, H., & Li, G. (2008). Tourism demand modelling and forecasting—A review of recent research. Tourism
Management, 29(2), 203–220. https://doi.org/10.1016/J.TOURMAN.2007.07.016
Song, H., Qiu, R. T. R., & Park, J. (2019). A review of research on tourism demand forecasting. Annals of
Tourism Research, 75, 338–362. https://doi.org/10.1016/J.ANNALS.2018.12.001
Song, H., Wen, L., & Liu, C. (2019). Density tourism demand forecasting revisited. Annals of Tourism
Research, 75, 379–392. https://doi.org/10.1016/J.ANNALS.2018.12.019
Song, H., & Witt, S. F. (2011). Tourism demand modelling and forecasting : modern econometric approaches. Routledge.
Subsecretaria de Turismo de Chile. (2018). Estadísticas. Retrieved June 10, 2020, from http://www.subturismo.gob.cl/documentos/estadisticas/
Thushara, S. C., Su, J.-J., & Bandara, J. S. (2019). Forecasting international tourist arrivals in formulating tourism strategies and planning: The case of Sri Lanka. Cogent Economics & Finance, 7(1). https://doi.org/10.1080/23322039.2019.1699884
Velásquez, J. D., Olaya, Y., & Franco, C. J. (2010). Predicción de series temporales usando máquinas de vectores de soporte. Ingeniare, 18(1), 64–75. https://doi.org/10.4067/s0718-33052010000100008
Witt, C. A., Witt, S. F., & Wilson, N. (1994). Forecasting international tourist flows. Annals of Tourism
Research, 21(3), 612–628. https://doi.org/10.1016/0160-7383(94)90123-6
World travel & Tourism Council. (2018). Economic Impact: Chile. Retrieved from https://www.wttc.org/economic-impact/country-analysis/
Zenker, S., & Kock, F. (2020). The coronavirus pandemic – A critical discussion of a tourism research agenda. Tourism Management, 81. https://doi.org/10.1016/j.tourman.2020.104164
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Cristian Mauricio Mondaca-Marino, Ailin Arriagada-Millaman
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
I confirm that the work is original (of my/our authorship), and that it will not be submitted to other journals or publications until the final resolution of the review process in PASOS, RTPC.
I authorize the publication of my work by PASOS, PSTN of free and open access in any of the formats that I deem appropriate, for an indefinite period of time and as a non-remunerated collaboration.
Likewise, the author(s) understands that the published work may be linked or deposited on any server or included in other publications (republication), provided that the new place and/or new edition references the original publication and acknowledges the authorship and copyright ownership of PASOS RTPC publications.
Authors understand that a plagiarism-self-plagiarism check will be performed, and the article may be removed at any time from the editorial flow.