Forecast of Chile's tourism demand based on seasonal linear and nonlinear models

Authors

  • Cristian Colther Universidad Austral de Chile
  • Ailin Arriagada-Millaman Austral of Chile University

DOI:

https://doi.org/10.25145/j.pasos.2021.19.021

Keywords:

ARIMA models, tourism demand, short-term estimation, non-linear series, seasonal series

Abstract

In this paper the emissive and receptive tourism that Chile experienced for the period 2000-2018 has been modeled. Linear regression models with dichotomous variables and ARIMA with seasonal component models have been used to modeling times series and evaluate their forecast errors. The results show that ARIMA with a seasonal component models allow modeling and forecasting of the series that adequately reflect the dynamics of growth and its seasonal behavior with less error in the short term.

Downloads

Download data is not yet available.

Author Biography

Ailin Arriagada-Millaman, Austral of Chile University

Master in Tourism Management and Innovation, Commercial Engineer mention Economics.

References

Box, G. E., Jenkins, G., Reinsel, G. C., & Ljung, G. M. (2016). Time series analysis: forecasting and control (5th ed.). New Jersey: John Wiley & Sons.

Box, G. E. P., Jenkins, G. M., & MacGregor, J. F. (1974). Some Recent Advances in Forecasting and Control. Applied Statistics, 23(2), 158. https://doi.org/10.2307/2346997

Chang, Y. W., & Liao, M. Y. (2010). A seasonal ARIMA model of tourism forecasting: The case of Taiwan.

Asia Pacific Journal of Tourism Research, 15(2), 215–221. https://doi.org/10.1080/10941661003630001

Chatziantoniou, I., Degiannakis, S., Eeckels, B., & Filis, G. (2016). Forecasting tourist arrivals using origin country macroeconomics. Applied Economics, 48(27), 2571–2585. https://doi.org/10.1080/00036846.2015.1125434

Choden, & Unhapipat, S. (2018). ARIMA model to forecast international tourist visit in Bumthang, Bhutan.

Journal of Physics: Conference Series, 1039(1). https://doi.org/10.1088/1742-6596/1039/1/012023

Du Preez, J., & Witt, S. F. (2003). Univariate versus multivariate time series forecasting: an application to international tourism demand. International Journal of Forecasting, 19(3), 435–451. https://doi.org/10.1016/S0169-2070(02)00057-2

Goh, C., & Law, R. (2002). Modeling and forecasting tourism demand for arrivals with stochastic nonstationary seasonality and intervention. Tourism Management, 23(5), 499–510. https://doi.org/10.1016/S0261-5177(02)00009-2

Goh, C., & Law, R. (2011). The Methodological Progress of Tourism Demand Forecasting: A Review of Related Literature. Journal of Travel & Tourism Marketing, 28(3), 296–317. https://doi.org/10.1080/10548408.2011.562856

Greene, W. H. (2018). Econometric analysis (8th ed.). Pearson.

Higgins-Desbiolles, F. (2020). Socialising tourism for social and ecological justice after COVID-19. Tourism

Geographies. https://doi.org/10.1080/14616688.2020.1757748

Kim, J. H., Wong, K., Athanasopoulos, G., & Liu, S. (2011). Beyond point forecasting: Evaluation of alternative prediction intervals for tourist arrivals. International Journal of Forecasting, 27(3), 887–901. https://doi.org/10.1016/J.IJFORECAST.2010.02.014

Kulendran, N., & Witt, S. F. (2003). Forecasting the Demand for International Business Tourism. Journal of

Travel Research, 41(3), 265–271. https://doi.org/10.1177/0047287502239034

Kulendran, N., & Wong, K. K. F. (2005). Modeling Seasonality in Tourism Forecasting. Journal of Travel

Research, 44(2), 163–170. https://doi.org/10.1177/0047287505276605

Lim, C., & McAleer, M. (2000). A seasonal analysis of Asian tourist arrivals to Australia. Applied Economics,32(4), 499–509. https://doi.org/10.1080/000368400322660

Lim, C., & McAleer, M. (2001). Forecasting tourist arrivals. Annals of Tourism Research, 28(4), 965–977. https://doi.org/10.1016/S0160-7383(01)00006-8

Lim, C., & McAleer, M. (2002). Time series forecasts of international travel demand for Australia. Tourism

Management, 23(4), 389–396. https://doi.org/10.1016/S0261-5177(01)00098-X

Ma, E., Liu, Y., Li, J., & Chen, S. (2016). Anticipating Chinese tourists arrivals in Australia: A time series analysis. Tourism Management Perspectives, 17, 50–58. https://doi.org/10.1016/j.tmp.2015.12.004

Makridakis, S., & Hibon, M. (1997). ARMA models and the Box-Jenkins methodology. Journal of Forecasting, 16(3), 147–163. https://doi.org/10.1002/(SICI)1099-131X(199705)16:3<147::AID- FOR652>3.0.CO;2-X

Organización Mundial del Turismo. (2017). Panorama OMT del turismo internacional, Edición 2017. In

Panorama OMT del turismo internacional, Edición 2017. https://doi.org/10.18111/9789284419043

Peiris, H. (2016). A Seasonal ARIMA Model of Tourism Forecasting : The Case of Sri Lanka. Journal of Tourism, Hospitality and Sports, 22, 98–109. Retrieved from https://www.iiste.org/Journals/index.php/JTHS/article/view/33831

Song, H., & Li, G. (2008). Tourism demand modelling and forecasting—A review of recent research. Tourism

Management, 29(2), 203–220. https://doi.org/10.1016/J.TOURMAN.2007.07.016

Song, H., Qiu, R. T. R., & Park, J. (2019). A review of research on tourism demand forecasting. Annals of

Tourism Research, 75, 338–362. https://doi.org/10.1016/J.ANNALS.2018.12.001

Song, H., Wen, L., & Liu, C. (2019). Density tourism demand forecasting revisited. Annals of Tourism

Research, 75, 379–392. https://doi.org/10.1016/J.ANNALS.2018.12.019

Song, H., & Witt, S. F. (2011). Tourism demand modelling and forecasting : modern econometric approaches. Routledge.

Subsecretaria de Turismo de Chile. (2018). Estadísticas. Retrieved June 10, 2020, from http://www.subturismo.gob.cl/documentos/estadisticas/

Thushara, S. C., Su, J.-J., & Bandara, J. S. (2019). Forecasting international tourist arrivals in formulating tourism strategies and planning: The case of Sri Lanka. Cogent Economics & Finance, 7(1). https://doi.org/10.1080/23322039.2019.1699884

Velásquez, J. D., Olaya, Y., & Franco, C. J. (2010). Predicción de series temporales usando máquinas de vectores de soporte. Ingeniare, 18(1), 64–75. https://doi.org/10.4067/s0718-33052010000100008

Witt, C. A., Witt, S. F., & Wilson, N. (1994). Forecasting international tourist flows. Annals of Tourism

Research, 21(3), 612–628. https://doi.org/10.1016/0160-7383(94)90123-6

World travel & Tourism Council. (2018). Economic Impact: Chile. Retrieved from https://www.wttc.org/economic-impact/country-analysis/

Zenker, S., & Kock, F. (2020). The coronavirus pandemic – A critical discussion of a tourism research agenda. Tourism Management, 81. https://doi.org/10.1016/j.tourman.2020.104164

Published

2021-04-12

How to Cite

Colther, C. ., & Arriagada-Millaman, A. (2021). Forecast of Chile’s tourism demand based on seasonal linear and nonlinear models. PASOS Revista De Turismo Y Patrimonio Cultural, 19(2), 232–336. https://doi.org/10.25145/j.pasos.2021.19.021

Publication Facts

Metric
This article
Other articles
Peer reviewers 
5
2.4

Reviewer profiles  N/A

Author statements

Author statements
This article
Other articles
Data availability 
N/A
16%
External funding 
N/A
32%
Competing interests 
N/A
11%
Metric
This journal
Other journals
Articles accepted: 18% 
33%
Days to publication 
457
145

Indexed in

Editor & editorial board
profiles
Publisher 
Instituto Universitario de Investigación Social y Turismo. Universidad de La Laguna (España) - Instituto Universitario da Maia ISMAI (Portugal)