Forecasting tourism arrivals with an online search engine data: A study of the Balearic Islands
DOI:
https://doi.org/10.25145/10.25145/j.pasos.2017.15.064Keywords:
Google Trends, Forecasting, Revenue Management, ARMAX, Balearic IslandAbstract
This study explores issues related to the forecasting in revenue management in the prediction of tourism arrivals for the Balearic Islands. Specifically, the study uses queries from a web search data (Google Trends) in order to demonstrate the forecasting power of such measures compared to traditional methods. I developed a database formed by the two main tourist volumes and then, I compared each model with its corresponding baseline to figure out whether the Google Trends indicator can increase accuracy of the prediction. Consequently, Granger causality test indicated a positive causality between variables suggesting good estimating results. Besides, I calculated the Mean Absolute Percentage Errors (MAPE) for each model and the results showed a considerable improvement of the Google Trends models compared to baseline models. The results provide some hints for increasing company efficiency and enhance policy maker decision making.
Downloads
References
Aguiló, E., Riera, A. and Rosselló, J. 2005 “The short-term price effect of a tourist tax through a dynamic demand model: The case of the Balearic Islands”. Tourism Management, 26(3):359-365.
Althouse, B.M., Ng, Y. Y. and Cummings, D.A. 2011 “Prediction of dengue incidence using search query surveillance”. PLoS Neglected Tropical Diseases, 5(8): e1258.
Alvarez-Diaz, M., Mateu-Sbert, J. and Rosselló-Nadal, J. 2009 ”Forecasting tourist arrivals to Balearic Island using genetic programming”. International Journal of Computational Economics and Econometrics,1(1):65-75.
Álvarez-Díaz, M. and Rosselló-Nadal, J. 2010 ”Forecasting British tourist arrivals in the Balearic Islands using meteorological variables”. Tourism Economics, 16 (1):153-168.
Arenoe, B., Van der Rest, J.P. and Kattuman, P. 2015 ”Game theoretic pricing models in hotel revenue management: An equilibrium choice-based conjoint analysis approach”. Tourism Management, 51: 96-102.
Bangwayo-Skeete, P.F. and Skeete, R.W. 2015 “Can Google data improve the forecasting performance of tourist arrivals? Mixed-data sampling approach”. Tourism Management, 46: 454-464.
Butler, R. 1980 ”The concept of a Tourist Area Cycle of Evolution: Implications for Management of Resources”. Canadian Geographer, 24: 5-12.
Canestrelli, E. and Costa, P. 1991 “Tourist capacity: A fuzzy approach”. Annals of Tourism Research, 18 (2): 295-311.
Castle, J.L., Fawcett, N.W. and Hendry, D.F. 2009 “Nowcasting is not just contemporaneous forecasting”. National Institute Economic Review, 210 (1):71–89.
Choi, H. and Varian, H. 2009 “Predicting the Present with Google Trends”. Economic Record, 88(1):2-9
Chu, F.L. 2009 ”Forecasting tourism demand with ARMA-based methods”. Tourism Management, 30(5):740-751.
Delgado-Verde, M., Martín-de-Castro, G., Navas López, J.E. and Cruz-González, J. 2011 “Capital social, capital relacional e innovación tecnológica. Una aplicación al sector manufacturero español de alta y media-alta tecnología”. Cuadernos de Economía y Dirección de la Empresa, 14:207-221.
Ginsberg, J., Mohebbi, M.H., Patel, R.S., Brammer, L., Smolinski, M.S. and Brilliant, L. 2009 “Detecting influenza epidemics using search engine query data”. Nature, 457(7232):1012-1014.
Gounopoulos, D., Petmezas, D. and Santamaria, D. 2012 ”Forecasting tourist arrivals in Greece and the impact of macroeconomic shocks from the countries of tourists’ origin”. Annals of Tourism Research, 39 (2):641-666.
Hair, J.F. Jr, Anderson, R.E., Tatham, R.L. and Black, W.C. 2004 Análisis multivariante, 5th ed.,Pearson-Prentice Hall, Spain:Madrid.
Huang, X., Zhang, L. and Ding, Y. 2016 ”The Baidu Index: Uses in predicting tourism flows: A case study of the Forbidden City”. Tourism Management, In press.
Ibestat, Institut d’Estadística de les Illes Balears (2016). Estadísticas Economía, turismo, flujo de turistas. Retrieved from http://www.ibestat.cat/ibestat/estadistiques/economia/turisme/ fluxe-turistes-frontur/043d7774-cd6c-4363-929a-703aaa0cb9e0. Accessed 26.07.16
Jackman, M. and Naitram, S. 2015 ”Nowcasting tourist arrivals in Barbados- just Google it!”. Tourism Economics, 21 (6):1309-1313.
Jacob, M., Florido, C. and Aguiló, E. 2010 ”Environmental Innovation as a competitiveness factor in the Balearic Islands”. Tourism Economics, 16(3):755-764
Kennedy, A.F. and Hauksson, K.M. 2012 Global Search Engine Marketing: Fine-tuning Your International Search Engine Results. Pearson, USA: Indiana
Li, G., Song, H. and Witt, S. F. 2005 “Recent developments in econometric modelling and forecasting”. Journal of Travel Research, 44: 82–99.
Palmer, T. and Riera, A. 2003 ”Tourism and environmental taxes. With special reference to the “Balearic Ecotax”. Tourism Management, 24(6):665-674.
Pan, B., Litvin, S.W. and Goldman, H. 2006 Real Users, Real Trips, and Real Queries: An analysis of Destination Search on a Search Engine, Annual Conference of Travel and Tourism Research Association, Ireland.
Schwartz, Z., Stewart, W. and Backlund, E. 2012 ”Visitation at capacity-constrained tourism destinations: Exploring revenue management at a national park”. Tourism Management, 33 (3):500-508.
Shen, S., Li, G. and Song, H. 2011 ”Combination forecast of international tourism demand”. Annals of Tourism Research, 38(1):72-89.
Song, H. and Li, G. 2008 ”Tourism demand modelling and forecasting- A review of recent research”. Tourism Management, 29(2):203-220.
Song, H., Witt, S.F. and Li, G. 2008 The advanced econometrics of tourism demand. New York: Routledge
Vinod, B. 2004 ”Unlocking the value of revenue management in the hotel industry”. Journal of Revenue and Pricing Management, 3(2):178-190.
Yang, X., Pan, B., Evans, J. and Lv, B. 2015 ”Forecasting Chinese tourist volume with search engine data”. Tourism Management, 46:386-397.
Downloads
Published
How to Cite
Issue
Section
License
I confirm that the work is original (of my/our authorship), and that it will not be submitted to other journals or publications until the final resolution of the review process in PASOS, RTPC.
I authorize the publication of my work by PASOS, PSTN of free and open access in any of the formats that I deem appropriate, for an indefinite period of time and as a non-remunerated collaboration.
Likewise, the author(s) understands that the published work may be linked or deposited on any server or included in other publications (republication), provided that the new place and/or new edition references the original publication and acknowledges the authorship and copyright ownership of PASOS RTPC publications.
Authors understand that a plagiarism-self-plagiarism check will be performed, and the article may be removed at any time from the editorial flow.