Previsão de chegadas turísticas com dados do motor de busca on-line: Um estudo sobre as Ilhas Baleares

Autores

  • Óscar García Rodríguez Universitat de les Illes Balears

DOI:

https://doi.org/10.25145/10.25145/j.pasos.2017.15.064

Palavras-chave:

Tendências do Google, Previsão, Gestão das receitas, ARMAX, Ilha Baleares

Resumo

Este estudo explora questões relacionadas com a previsão da gestão de receitas na previsão das chegadas turísticas para as Ilhas Baleares. Especificamente, o estudo utiliza consultas a partir de dados de pesquisa na web (Google Trends), a fim de demonstrar o poder de previsão de tais medidas em comparação com os métodos tradicionais. Desenvolvi uma base de dados formada pelos dois principais volumes turísticos e depois, comparei cada modelo com a linha de base correspondente para descobrir se o indicador Google Trends pode aumentar a precisão da previsão. Consequentemente, o teste de causalidade Granger indicou uma causalidade positiva entre as variáveis sugerindo bons resultados de estimativa. Além disso, calculei os erros percentuais médios absolutos (MAPE) para cada modelo e os resultados mostraram uma melhoria considerável dos modelos do Google Trends em comparação com os modelos de linha de base. Os resultados fornecem algumas dicas para aumentar a eficiência da empresa e melhorar a tomada de decisões dos decisores políticos.

Downloads

##plugins.generic.pfl.publicationFactsTitle##

Metric
##plugins.generic.pfl.thisArticle##
##plugins.generic.pfl.otherArticles##
##plugins.generic.pfl.peerReviewers## 
##plugins.generic.pfl.numPeerReviewers##
##plugins.generic.pfl.averagePeerReviewers##

##plugins.generic.pfl.reviewerProfiles##  Indisp.

##plugins.generic.pfl.authorStatements##

##plugins.generic.pfl.authorStatements##
##plugins.generic.pfl.thisArticle##
##plugins.generic.pfl.otherArticles##
##plugins.generic.pfl.dataAvailability## 
##plugins.generic.pfl.dataAvailability.unsupported##
##plugins.generic.pfl.averagePercentYes##
##plugins.generic.pfl.funders## 
Indisp.
##plugins.generic.pfl.numHaveFunders##
##plugins.generic.pfl.competingInterests## 
Indisp.
##plugins.generic.pfl.averagePercentYes##
Metric
##plugins.generic.pfl.forThisJournal##
##plugins.generic.pfl.otherJournals##
##plugins.generic.pfl.articlesAccepted## 
##plugins.generic.pfl.numArticlesAccepted##
##plugins.generic.pfl.numArticlesAcceptedShort##
##plugins.generic.pfl.daysToPublication## 
##plugins.generic.pfl.numDaysToPublication##
145

##plugins.generic.pfl.indexedIn##

    ##plugins.generic.pfl.indexedList##
##plugins.generic.pfl.editorAndBoard##
##plugins.generic.pfl.profiles##
##plugins.generic.pfl.academicSociety## 
PASOS. Revista de Turismo y Patrimonio Cultural
##plugins.generic.pfl.publisher## 
Instituto Universitario de Investigación Social y Turismo. Universidad de La Laguna (España) - Instituto Universitario da Maia ISMAI (Portugal)

PFL

1 2 3 4 5
Not useful Very useful

Biografia do Autor

Óscar García Rodríguez, Universitat de les Illes Balears

RDTUR2016

Referências

Aguiló, E., Riera, A. and Rosselló, J. 2005 “The short-term price effect of a tourist tax through a dynamic demand model: The case of the Balearic Islands”. Tourism Management, 26(3):359-365.

Althouse, B.M., Ng, Y. Y. and Cummings, D.A. 2011 “Prediction of dengue incidence using search query surveillance”. PLoS Neglected Tropical Diseases, 5(8): e1258.

Alvarez-Diaz, M., Mateu-Sbert, J. and Rosselló-Nadal, J. 2009 ”Forecasting tourist arrivals to Balearic Island using genetic programming”. International Journal of Computational Economics and Econometrics,1(1):65-75.

Álvarez-Díaz, M. and Rosselló-Nadal, J. 2010 ”Forecasting British tourist arrivals in the Balearic Islands using meteorological variables”. Tourism Economics, 16 (1):153-168.

Arenoe, B., Van der Rest, J.P. and Kattuman, P. 2015 ”Game theoretic pricing models in hotel revenue management: An equilibrium choice-based conjoint analysis approach”. Tourism Management, 51: 96-102.

Bangwayo-Skeete, P.F. and Skeete, R.W. 2015 “Can Google data improve the forecasting performance of tourist arrivals? Mixed-data sampling approach”. Tourism Management, 46: 454-464.

Butler, R. 1980 ”The concept of a Tourist Area Cycle of Evolution: Implications for Management of Resources”. Canadian Geographer, 24: 5-12.

Canestrelli, E. and Costa, P. 1991 “Tourist capacity: A fuzzy approach”. Annals of Tourism Research, 18 (2): 295-311.

Castle, J.L., Fawcett, N.W. and Hendry, D.F. 2009 “Nowcasting is not just contemporaneous forecasting”. National Institute Economic Review, 210 (1):71–89.

Choi, H. and Varian, H. 2009 “Predicting the Present with Google Trends”. Economic Record, 88(1):2-9

Chu, F.L. 2009 ”Forecasting tourism demand with ARMA-based methods”. Tourism Management, 30(5):740-751.

Delgado-Verde, M., Martín-de-Castro, G., Navas López, J.E. and Cruz-González, J. 2011 “Capital social, capital relacional e innovación tecnológica. Una aplicación al sector manufacturero español de alta y media-alta tecnología”. Cuadernos de Economía y Dirección de la Empresa, 14:207-221.

Ginsberg, J., Mohebbi, M.H., Patel, R.S., Brammer, L., Smolinski, M.S. and Brilliant, L. 2009 “Detecting influenza epidemics using search engine query data”. Nature, 457(7232):1012-1014.

Gounopoulos, D., Petmezas, D. and Santamaria, D. 2012 ”Forecasting tourist arrivals in Greece and the impact of macroeconomic shocks from the countries of tourists’ origin”. Annals of Tourism Research, 39 (2):641-666.

Hair, J.F. Jr, Anderson, R.E., Tatham, R.L. and Black, W.C. 2004 Análisis multivariante, 5th ed.,Pearson-Prentice Hall, Spain:Madrid.

Huang, X., Zhang, L. and Ding, Y. 2016 ”The Baidu Index: Uses in predicting tourism flows: A case study of the Forbidden City”. Tourism Management, In press.

Ibestat, Institut d’Estadística de les Illes Balears (2016). Estadísticas Economía, turismo, flujo de turistas. Retrieved from http://www.ibestat.cat/ibestat/estadistiques/economia/turisme/ fluxe-turistes-frontur/043d7774-cd6c-4363-929a-703aaa0cb9e0. Accessed 26.07.16

Jackman, M. and Naitram, S. 2015 ”Nowcasting tourist arrivals in Barbados- just Google it!”. Tourism Economics, 21 (6):1309-1313.

Jacob, M., Florido, C. and Aguiló, E. 2010 ”Environmental Innovation as a competitiveness factor in the Balearic Islands”. Tourism Economics, 16(3):755-764

Kennedy, A.F. and Hauksson, K.M. 2012 Global Search Engine Marketing: Fine-tuning Your International Search Engine Results. Pearson, USA: Indiana

Li, G., Song, H. and Witt, S. F. 2005 “Recent developments in econometric modelling and forecasting”. Journal of Travel Research, 44: 82–99.

Palmer, T. and Riera, A. 2003 ”Tourism and environmental taxes. With special reference to the “Balearic Ecotax”. Tourism Management, 24(6):665-674.

Pan, B., Litvin, S.W. and Goldman, H. 2006 Real Users, Real Trips, and Real Queries: An analysis of Destination Search on a Search Engine, Annual Conference of Travel and Tourism Research Association, Ireland.

Schwartz, Z., Stewart, W. and Backlund, E. 2012 ”Visitation at capacity-constrained tourism destinations: Exploring revenue management at a national park”. Tourism Management, 33 (3):500-508.

Shen, S., Li, G. and Song, H. 2011 ”Combination forecast of international tourism demand”. Annals of Tourism Research, 38(1):72-89.

Song, H. and Li, G. 2008 ”Tourism demand modelling and forecasting- A review of recent research”. Tourism Management, 29(2):203-220.

Song, H., Witt, S.F. and Li, G. 2008 The advanced econometrics of tourism demand. New York: Routledge

Vinod, B. 2004 ”Unlocking the value of revenue management in the hotel industry”. Journal of Revenue and Pricing Management, 3(2):178-190.

Yang, X., Pan, B., Evans, J. and Lv, B. 2015 ”Forecasting Chinese tourist volume with search engine data”. Tourism Management, 46:386-397.

Publicado

2017-10-24

Como Citar

García Rodríguez, Óscar. (2017). Previsão de chegadas turísticas com dados do motor de busca on-line: Um estudo sobre as Ilhas Baleares. PASOS Revista De Turismo Y Patrimonio Cultural, 15(4), 943–958. https://doi.org/10.25145/10.25145/j.pasos.2017.15.064

Edição

Seção

Artigos